Point covariance estimation.
More...
#include <cloud_covariance_estimation.hpp>
|
|
| CloudCovarianceEstimation (const int num_threads=1) |
| |
| void | estimate (const std::vector< Eigen::Vector4d > &points, const std::vector< int > &neighbors, std::vector< Eigen::Vector4d > &normals, std::vector< Eigen::Matrix4d > &covs) const |
| | Estimate point normals and covariances.
|
| |
| void | estimate (const std::vector< Eigen::Vector4d > &points, const std::vector< int > &neighbors, const int k_neighbors, std::vector< Eigen::Vector4d > &normals, std::vector< Eigen::Matrix4d > &covs) const |
| | Estimate point normals and covariances.
|
| |
|
std::vector< Eigen::Matrix4d > | estimate (const std::vector< Eigen::Vector4d > &points, const std::vector< int > &neighbors, const int k_neighbors) const |
| | Estimate point covariances.
|
| |
|
std::vector< Eigen::Matrix4d > | estimate (const std::vector< Eigen::Vector4d > &points, const std::vector< int > &neighbors) const |
| | Estimate point covariances.
|
| |
| Eigen::Matrix4d | regularize (const Eigen::Matrix4d &cov, Eigen::Vector3d *eigenvalues=nullptr, Eigen::Matrix3d *eigenvectors=nullptr) const |
| | Regularize a covariance matrix.
|
| |
Point covariance estimation.
◆ estimate() [1/2]
| void glim::CloudCovarianceEstimation::estimate |
( |
const std::vector< Eigen::Vector4d > & |
points, |
|
|
const std::vector< int > & |
neighbors, |
|
|
const int |
k_neighbors, |
|
|
std::vector< Eigen::Vector4d > & |
normals, |
|
|
std::vector< Eigen::Matrix4d > & |
covs |
|
) |
| const |
Estimate point normals and covariances.
- Parameters
-
| points | Input points |
| neighbors | Neighbor indices (must be N * m, where N is the number of points) |
| k_neighbors | Number of neighbors used for estimation (must be <= m) |
| normals | [output] Estimated normals |
| covs | [output] Estimated covariances |
◆ estimate() [2/2]
| void glim::CloudCovarianceEstimation::estimate |
( |
const std::vector< Eigen::Vector4d > & |
points, |
|
|
const std::vector< int > & |
neighbors, |
|
|
std::vector< Eigen::Vector4d > & |
normals, |
|
|
std::vector< Eigen::Matrix4d > & |
covs |
|
) |
| const |
Estimate point normals and covariances.
- Parameters
-
| points | Input points |
| neighbors | Neighbor indices (must be N * k, where N is the number of points) |
| normals | [output] Estimated normals |
| covs | [output] Estimated covariances |
◆ regularize()
| Eigen::Matrix4d glim::CloudCovarianceEstimation::regularize |
( |
const Eigen::Matrix4d & |
cov, |
|
|
Eigen::Vector3d * |
eigenvalues = nullptr, |
|
|
Eigen::Matrix3d * |
eigenvectors = nullptr |
|
) |
| const |
Regularize a covariance matrix.
- Parameters
-
| cov | Input covariance matrix |
| eigenvalues | [output] Eigenvalues of the covariance matrix |
| eigenvectors | [output] Eigenvectors of the covariance matrix |
- Returns
- Regularized covariance matrix
The documentation for this class was generated from the following file: