small_gicp
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 123]
 Npcl
 CPointCovariancePoint with covariance for PCL
 CPointNormalCovariancePoint with normal and covariance for PCL
 Nsmall_gicp
 Ntraits
 CTraits< FlatContainer< HasNormals, HasCovs > >
 CTraits< GaussianVoxel >
 CTraits< IncrementalVoxelMap< VoxelContents > >
 CTraits< UnsafeKdTree< PointCloud, Projection > >
 CTraits< KdTree< PointCloud, Projection > >
 CTraits
 Chas_nearest_neighbor_searchCheck if T has nearest_neighbor_search method
 CTraits< pcl::PointCloud< PointType > >
 CTraits< PointCloudProxy< PointT > >
 CTraits< Eigen::MatrixXd >
 CTraits< PointCloud >
 CFlatContainerPoint container with a flat vector
 CEmpty
 CSettingFlatContainer setting
 CGaussianVoxelGaussian voxel that computes and stores voxel mean and covariance
 CSetting
 CVoxelInfoVoxel meta information
 CIncrementalVoxelMapIncremental voxelmap. This class supports incremental point cloud insertion and LRU-based voxel deletion that removes voxels that are not recently referenced
 CKdTreeNodeKdTree node
 CKdTreeBuilderSingle thread Kd-tree builder
 CUnsafeKdTree"Unsafe" KdTree
 CKdTree"Safe" KdTree that holds the ownership of the input points
 CKdTreeBuilderOMPKd-tree builder with OpenMP
 CKdTreeBuilderTBBKd-tree builder with TBB
 CKnnSettingK-nearest neighbor search setting
 Cidentity_transformIdentity transform (alternative to std::identity in C++20)
 CKnnResultK-nearest neighbor search result container
 CProjectionSettingParameters to control the projection axis search
 CAxisAlignedProjectionConventional axis-aligned projection (i.e., selecting any of XYZ axes with the largest variance)
 CNormalProjectionNormal projection (i.e., selecting the 3D direction with the largest variance of the points)
 CNullFactorNull factor that gives no constraints
 CRestrictDoFFactorFactor to restrict the degrees of freedom of optimization (e.g., fixing roll, pitch rotation)
 CGICPFactorGICP (distribution-to-distribution) per-point error factor
 CSetting
 CICPFactorPoint-to-point per-point error factor
 CSetting
 CPointToPlaneICPFactorPoint-to-plane per-point error factor
 CSetting
 CHuberHuber robust kernel
 CSettingHuber robust kernel setting
 CCauchyCauchy robust kernel
 CSettingHuber robust kernel setting
 CRobustFactorRobustify a factor with a robust kernel
 CSettingRobust factor setting
 CPointCloudProxyProxy class to access PCL point cloud with external covariance matrices
 CRegistrationPCLPCL registration interfaces
 CPointCloudPoint cloud
 CGaussNewtonOptimizerGaussNewton optimizer
 CLevenbergMarquardtOptimizerLevenbergMarquardt optimizer
 CSerialReductionSingle-thread reduction
 CParallelReductionOMPParallel reduction with OpenMP backend
 CLinearizeSumSummation for linearized systems
 CErrorSumSummation for evaluated errors
 CParallelReductionTBBParallel reduction with TBB backend
 CRegistrationPoint cloud registration
 CRegistrationSettingRegistration setting
 CRegistrationResultRegistration result
 CNullRejectorNull correspondence rejector. This class accepts all input correspondences
 CDistanceRejectorRejecting correspondences with large distances
 CTerminationCriteriaRegistration termination criteria
 CNormalSetterComputes point normals from eigenvectors and sets them to the point cloud
 CCovarianceSetterComputes point covariances from eigenvectors and sets them to the point cloud
 CNormalCovarianceSetterComputes point normals and covariances from eigenvectors and sets them to the point cloud
 CRadixSortBuffersTemporal buffers for radix sort
 CXORVector3iHashSpatial hashing function. Teschner et al., "Optimized Spatial Hashing for Collision Detection of Deformable Objects", VMV2003